December 2017 January 2018
Wednesday, December 13, 2017
Random Picture (GC-GC_PAH.jpg)
Mo Tu We Th Fr Sa Su
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Latest Events

There are no upcoming events currently scheduled.
View full calendar
New Article on Soil Washing from LTU, Luleå PDF Print E-mail

Title: The influence of temperature, pH/molarity and extractant on the removal of arsenic, chromium and zinc from contaminated soil
Authors: Lea Rastas Amofah, Christian Maurice, Jurate Kumpiene and Prosun Bhattacharya

Abstract

Purpose

Normal soil washing leave high residual pollutant content in soil. The remediation could be improved by targeting the extraction to coarser fractions. Further, a low/high extraction pH and higher temperature enhance the pollutant removal, but these measures are costly. In this study, the utility of NaOH, oxalate–citrate (OC) and dithionite–citrate–oxalate (DCO) solutions for extracting of arsenic, chromium and zinc from contaminated soil were assessed and compared. In addition the effects of NaOH concentration and temperature on NaOH extractions, and those of temperature and pH on OC and DCO extractions, were evaluated.
Materials and methods
A two-level, full-factorial design with a centre point was implemented. Two factors, concentration and temperature,were evaluated in NaOH extractions, and pH and temperature for OC and DCO solutions. In all cases, the extraction temperature was 20°C, 30°C and 40°C. The studied NaOH concentrations were 0.05, 0.075 and 0.1 M. The pH in OC solutions was 3, 5 and 7, and in DCO solutions, 4.7, 6.3 and 6.7. Water-washed and medium coarse soil fraction of arsenic, chromium and zinc contaminated soil was agitated for 15 min with the extraction solution.
In NaOH extractions, the temperature and (less strongly) NaOH concentration significantly affected As and Cr mobilisation, but only the latter affected Zn mobilisation. Both pH and temperature significantly (and similarly) influenced As and Cr mobilisation in OC extractions, while only the pH influenced Zn mobilisation. In contrast, the extraction temperature (but not pH) influenced As, Cr and Zn mobilisation in DCO extractions.
For all extractants, mobilisation was most efficient at elevated temperature (40°C). None of the extractants reduced the soil’s As content to below the Swedish EPA’s guideline value. Use of DCO is not recommended because dithionite has a short lifetime and residual arsenic contents in DCO-extracted soil are relatively high. Instead, sequential extraction with NaOH followed by OC solutions (affording significant reductions in As, Cr and Zn levels in the soil with short extraction times) at 40°C is recommended.